Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Alzheimers Res Ther ; 15(1): 164, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789414

RESUMO

BACKGROUND: Hyperhomocysteinemia (HHcy) has been linked to development of Alzheimer's disease (AD) neuropathologically characterized by the accumulation of amyloid ß (Aß). Microglia (MG) play a crucial role in uptake of Aß fibrils, and its dysfunction worsens AD. However, the effect of HHcy on MG Aß phagocytosis remains unstudied. METHODS: We isolated MG from the cerebrum of HHcy mice with genetic cystathionine-ß-synthase deficiency (Cbs-/-) and performed bulk RNA-seq. We performed meta-analysis over transcriptomes of Cbs-/- mouse MG, human and mouse AD MG, MG Aß phagocytosis model, human AD methylome, and GWAS AD genes. RESULTS: HHcy and hypomethylation conditions were identified in Cbs-/- mice. Through Cbs-/- MG transcriptome analysis, 353 MG DEGs were identified. Phagosome formation and integrin signaling pathways were found suppressed in Cbs-/- MG. By analyzing MG transcriptomes from 4 AD patient and 7 mouse AD datasets, 409 human and 777 mouse AD MG DEGs were identified, of which 37 were found common in both species. Through further combinatory analysis with transcriptome from MG Aß phagocytosis model, we identified 130 functional-validated Aß phagocytic AD MG DEGs (20 in human AD, 110 in mouse AD), which reflected a compensatory activation of Aß phagocytosis. Interestingly, we identified 14 human Aß phagocytic AD MG DEGs which represented impaired MG Aß phagocytosis in human AD. Finally, through a cascade of meta-analysis of transcriptome of AD MG, functional phagocytosis, HHcy MG, and human AD brain methylome dataset, we identified 5 HHcy-suppressed phagocytic AD MG DEGs (Flt1, Calponin 3, Igf1, Cacna2d4, and Celsr) which were reported to regulate MG/MΦ migration and Aß phagocytosis. CONCLUSIONS: We established molecular signatures for a compensatory response of Aß phagocytosis activation in human and mouse AD MG and impaired Aß phagocytosis in human AD MG. Our discoveries suggested that hypomethylation may modulate HHcy-suppressed MG Aß phagocytosis in AD.


Assuntos
Doença de Alzheimer , Hiper-Homocisteinemia , Camundongos , Animais , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Microglia/metabolismo , Hiper-Homocisteinemia/complicações , Hiper-Homocisteinemia/genética , Hiper-Homocisteinemia/metabolismo , Metilação , Fagocitose , Modelos Animais de Doenças , Camundongos Transgênicos
2.
Front Immunol ; 14: 1113883, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776889

RESUMO

Introduction: Non-alcoholic fatty liver disease (NAFLD) has a global prevalence of 25% of the population and is a leading cause of cirrhosis and hepatocellular carcinoma. NAFLD ranges from simple steatosis (non-alcoholic fatty liver) to non-alcoholic steatohepatitis (NASH). Hepatic macrophages, specifically Kupffer cells (KCs) and monocyte-derived macrophages, act as key players in the progression of NAFLD. Caspases are a family of endoproteases that provide critical connections to cell regulatory networks that sense disease risk factors, control inflammation, and mediate inflammatory cell death (pyroptosis). Caspase-11 can cleave gasdermin D (GSDMD) to induce pyroptosis and specifically defends against bacterial pathogens that invade the cytosol. However, it's still unknown whether high fat diet (HFD)-facilitated gut microbiota-generated cytoplasmic lipopolysaccharides (LPS) activate caspase-11 and promote NAFLD. Methods: To examine this hypothesis, we performed liver pathological analysis, RNA-seq, FACS, Western blots, Seahorse mitochondrial stress analyses of macrophages and bone marrow transplantation on HFD-induced NAFLD in WT and Casp11-/- mice. Results and Discussion: Our results showed that 1) HFD increases body wight, liver wight, plasma cholesterol levels, liver fat deposition, and NAFLD activity score (NAS score) in wild-type (WT) mice; 2) HFD increases the expression of caspase-11, GSDMD, interleukin-1ß, and guanylate-binding proteins in WT mice; 3) Caspase-11 deficiency decreases fat liver deposition and NAS score; 4) Caspase-11 deficiency decreases bone marrow monocyte-derived macrophage (MDM) pyroptosis (inflammatory cell death) and inflammatory monocyte (IM) surface GSDMD expression; 5) Caspase-11 deficiency re-programs liver transcriptomes and reduces HFD-induced NAFLD; 6) Caspase-11 deficiency decreases extracellular acidification rates (glycolysis) and oxidative phosphorylation (OXPHOS) in inflammatory fatty acid palmitic acid-stimulated macrophages, indicating that caspase-11 significantly contributes to maintain dual fuel bioenergetics-glycolysis and OXPHOS for promoting pyroptosis in macrophages. These results provide novel insights on the roles of the caspase-11-GSDMD pathway in promoting hepatic macrophage inflammation and pyroptosis and novel targets for future therapeutic interventions involving the transition of NAFLD to NASH, hyperlipidemia, type II diabetes, metabolic syndrome, metabolically healthy obesity, atherosclerotic cardiovascular diseases, autoimmune diseases, liver transplantation, and hepatic cancers.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , Dieta Hiperlipídica/efeitos adversos , Caspases/metabolismo , Piroptose , Fosforilação Oxidativa , Diabetes Mellitus Tipo 2/metabolismo , Macrófagos , Inflamação/metabolismo , Glicólise
3.
JCI Insight ; 8(1)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36394956

RESUMO

We determined whether gut microbiota-produced trimethylamine (TMA) is oxidized into trimethylamine N-oxide (TMAO) in nonliver tissues and whether TMAO promotes inflammation via trained immunity (TI). We found that endoplasmic reticulum (ER) stress genes were coupregulated with MitoCarta genes in chronic kidney diseases (CKD); TMAO upregulated 190 genes in human aortic endothelial cells (HAECs); TMAO synthesis enzyme flavin-containing monooxygenase 3 (FMO3) was expressed in human and mouse aortas; TMAO transdifferentiated HAECs into innate immune cells; TMAO phosphorylated 12 kinases in cytosol via its receptor PERK and CREB, and integrated with PERK pathways; and PERK inhibitors suppressed TMAO-induced ICAM-1. TMAO upregulated 3 mitochondrial genes, downregulated inflammation inhibitor DARS2, and induced mitoROS, and mitoTEMPO inhibited TMAO-induced ICAM-1. ß-Glucan priming, followed by TMAO restimulation, upregulated TNF-α by inducing metabolic reprogramming, and glycolysis inhibitor suppressed TMAO-induced ICAM-1. Our results have provided potentially novel insights regarding TMAO roles in inducing EC activation and innate immune transdifferentiation and inducing metabolic reprogramming and TI for enhanced vascular inflammation, and they have provided new therapeutic targets for treating cardiovascular diseases (CVD), CKD-promoted CVD, inflammation, transplantation, aging, and cancer.


Assuntos
Doenças Cardiovasculares , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Células Endoteliais , Imunidade Treinada , Fígado/metabolismo , Inflamação/metabolismo , Doenças Cardiovasculares/metabolismo , Aorta , Insuficiência Renal Crônica/metabolismo
4.
Redox Biol ; 45: 102018, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34140262

RESUMO

Hyperhomocysteinemia (HHcy) is an established and potent independent risk factor for degenerative diseases, including cardiovascular disease (CVD), Alzheimer disease, type II diabetes mellitus, and chronic kidney disease. HHcy has been shown to inhibit proliferation and promote inflammatory responses in endothelial cells (EC), and impair endothelial function, a hallmark for vascular injury. However, metabolic processes and molecular mechanisms mediating HHcy-induced endothelial injury remains to be elucidated. This study examined the effects of HHcy on the expression of microRNA (miRNA) and mRNA in human aortic EC treated with a pathophysiologically relevant concentration of homocysteine (Hcy 500 µM). We performed a set of extensive bioinformatics analyses to identify HHcy-altered metabolic and molecular processes. The global functional implications and molecular network were determined by Gene Set Enrichment Analysis (GSEA) followed by Cytoscape analysis. We identified 244 significantly differentially expressed (SDE) mRNA, their relevant functional pathways, and 45 SDE miRNA. HHcy-altered SDE inversely correlated miRNA-mRNA pairs (45 induced/14 reduced mRNA) were discovered and applied to network construction using an experimentally verified database. We established a hypothetical model to describe the biochemical and molecular network with these specified miRNA/mRNA axes, finding: 1) HHcy causes metabolic reprogramming by increasing glucose uptake and oxidation, by glycogen debranching and NAD+/CoA synthesis, and by stimulating mitochondrial reactive oxygen species production via NNT/IDH2 suppression-induced NAD+/NADP-NADPH/NADP+ metabolism disruption; 2) HHcy activates inflammatory responses by activating inflammasome-pyroptosis mainly through ↓miR193b→↑CASP-9 signaling and by inducing IL-1ß and adhesion molecules through the ↓miR29c→↑NEDD9 and the ↓miR1256→↑ICAM-1 axes, as well as GPCR and interferon α/ß signaling; 3) HHcy promotes cell degradation by the activation of lysosome autophagy and ubiquitin proteasome systems; 4) HHcy causes cell cycle arrest at G1/S and S/G2 transitions, suppresses spindle checkpoint complex and cytokinetic abscission, and suppresses proliferation through ↓miRNA335/↑VASH1 and other axes. These findings are in accordance with our previous studies and add a wealth of heretofore-unexplored molecular and metabolic mechanisms underlying HHcy-induced endothelial injury. This is the first study to consider the effects of HHcy on both global mRNA and miRNA expression changes for mechanism identification. Molecular axes and biochemical processes identified in this study are useful not only for the understanding of mechanisms underlying HHcy-induced endothelial injury, but also for discovering therapeutic targets for CVD in general.


Assuntos
Diabetes Mellitus Tipo 2 , Hiper-Homocisteinemia , Células Endoteliais , Homocisteína , Humanos , Hiper-Homocisteinemia/genética , Oxirredução , Transdução de Sinais
5.
Front Immunol ; 11: 595813, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33154757

RESUMO

Interleukin (IL) 35 is a novel immunosuppressive heterodimeric cytokine in IL-12 family. Whether and how IL-35 regulates ischemia-induced angiogenesis in peripheral artery diseases are unrevealed. To fill this important knowledge gap, we used loss-of-function, gain-of-function, omics data analysis, RNA-Seq, in vivo and in vitro experiments, and we have made the following significant findings: i) IL-35 and its receptor subunit IL-12RB2, but not IL-6ST, are induced in the muscle after hindlimb ischemia (HLI); ii) HLI-induced angiogenesis is improved in Il12rb2-/- mice, in ApoE-/-/Il12rb2-/- mice compared to WT and ApoE-/- controls, respectively, where hyperlipidemia inhibits angiogenesis in vivo and in vitro; iii) IL-35 cytokine injection as a gain-of-function approach delays blood perfusion recovery at day 14 after HLI; iv) IL-35 spares regenerative angiogenesis at the late phase of HLI recovery after day 14 of HLI; v) Transcriptome analysis of endothelial cells (ECs) at 14 days post-HLI reveals a disturbed extracellular matrix re-organization in IL-35-injected mice; vi) IL-35 downregulates three reactive oxygen species (ROS) promoters and upregulates one ROS attenuator, which may functionally mediate IL-35 upregulation of anti-angiogenic extracellular matrix proteins in ECs; and vii) IL-35 inhibits human microvascular EC migration and tube formation in vitro mainly through upregulating anti-angiogenic extracellular matrix-remodeling proteins. These findings provide a novel insight on the future therapeutic potential of IL-35 in suppressing ischemia/inflammation-triggered inflammatory angiogenesis at early phase but sparing regenerative angiogenesis at late phase.


Assuntos
Membro Posterior/irrigação sanguínea , Interleucinas/imunologia , Isquemia/imunologia , Receptores de Interleucina-12/imunologia , Animais , Apolipoproteínas E/genética , Linhagem Celular , Movimento Celular , Matriz Extracelular/imunologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica , Neovascularização Fisiológica , Espécies Reativas de Oxigênio/imunologia , Receptores de Interleucina-12/genética
6.
Redox Biol ; 28: 101322, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31605963

RESUMO

Homocysteine-Methionine (HM) cycle produces universal methyl group donor S-adenosylmethione (SAM), methyltransferase inhibitor S-adenosylhomocysteine (SAH) and homocysteine (Hcy). Hyperhomocysteinemia (HHcy) is established as an independent risk factor for cardiovascular disease (CVD) and other degenerative disease. We selected 115 genes in the extended HM cycle (31 metabolic enzymes and 84 methyltransferases), examined their protein subcellular location/partner protein, investigated their mRNA levels and mapped their corresponding histone methylation status in 35 disease conditions via mining a set of public databases and intensive literature research. We have 6 major findings. 1) All HM metabolic enzymes are located only in the cytosol except for cystathionine-ß-synthase (CBS), which was identified in both cytosol and nucleus. 2) Eight disease conditions encountered only histone hypomethylation on 8 histone residues (H3R2/K4/R8/K9/K27/K36/K79 and H4R3). Nine disease conditions had only histone hypermethylation on 8 histone residues (H3R2/K4/K9/K27/K36/K79 and H4R3/K20). 3) We classified 9 disease types with differential HM cycle expression pattern. Eleven disease conditions presented most 4 HM cycle pathway suppression. 4) Three disease conditions had all 4 HM cycle pathway suppression and only histone hypomethylation on H3R2/K4/R8/K9/K36 and H4R3. 5) Eleven HM cycle metabolic enzymes interact with 955 proteins. 6) Five paired HM cycle proteins interact with each other. We conclude that HM cycle is a key metabolic sensor system which mediates receptor-independent metabolism-associated danger signal recognition and modulates SAM/SAH-dependent methylation in disease conditions and that hypomethylation on frequently modified histone residues is a key mechanism for metabolic disorders, autoimmune disease and CVD. We propose that HM metabolism takes place in the cytosol, that nuclear methylation equilibration requires a nuclear-cytosol transfer of SAM/SAH/Hcy, and that Hcy clearance is essential for genetic protection.


Assuntos
Redes Reguladoras de Genes , Homocisteína/metabolismo , Hiper-Homocisteinemia/metabolismo , Metionina/metabolismo , Citosol/metabolismo , Histonas/metabolismo , Humanos , Hiper-Homocisteinemia/genética , Metilação , Mapas de Interação de Proteínas , Transporte Proteico
7.
Front Immunol ; 10: 2612, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824480

RESUMO

The mechanisms underlying pathophysiological regulation of tissue macrophage (Mφ) subsets remain poorly understood. From the expression of 207 Mφ genes comprising 31 markers for 10 subsets, 45 transcription factors (TFs), 56 immunometabolism enzymes, 23 trained immunity (innate immune memory) enzymes, and 52 other genes in microarray data, we made the following findings. (1) When 34 inflammation diseases and tumor types were grouped into eight categories, there was differential expression of the 31 Mφ markers and 45 Mφ TFs, highlighted by 12 shared and 20 group-specific disease pathways. (2) Mφ in lung, liver, spleen, and intestine (LLSI-Mφ) express higher M1 Mφ markers than lean adipose tissue Mφ (ATMφ) physiologically. (3) Pro-adipogenic TFs C/EBPα and PPARγ and proinflammatory adipokine leptin upregulate the expression of M1 Mφ markers. (4) Among 10 immune checkpoint receptors (ICRs), LLSI-Mφ and bone marrow (BM) Mφ express higher levels of CD274 (PDL-1) than ATMφ, presumably to counteract the M1 dominant status via its reverse signaling behavior. (5) Among 24 intercellular communication exosome mediators, LLSI- and BM- Mφ prefer to use RAB27A and STX3 than RAB31 and YKT6, suggesting new inflammatory exosome mediators for propagating inflammation. (6) Mφ in peritoneal tissue and LLSI-Mφ upregulate higher levels of immunometabolism enzymes than does ATMφ. (7) Mφ from peritoneum and LLSI-Mφ upregulate more trained immunity enzyme genes than does ATMφ. Our results suggest that multiple new mechanisms including the cell surface, intracellular immunometabolism, trained immunity, and TFs may be responsible for disease group-specific and shared pathways. Our findings have provided novel insights on the pathophysiological regulation of tissue Mφ, the disease group-specific and shared pathways of Mφ, and novel therapeutic targets for cancers and inflammations.


Assuntos
Inflamação/imunologia , Macrófagos/imunologia , Neoplasias/imunologia , Transdução de Sinais/imunologia , Mineração de Dados/métodos , Humanos
8.
Redox Biol ; 26: 101284, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31400697

RESUMO

Accumulated evidence strongly indicates that oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) production and antioxidants in favor of oxidants, plays an important role in disease pathogenesis. However, ROS can act as signaling molecules and fulfill essential physiological functions at basal levels. Each ROS would be different in the extent to stimulate and contribute to different pathophysiological effects. Importantly, multiple ROS generators can be activated either concomitantly or sequentially by relevant signaling molecules for redox biological functions. Here, we summarized the current knowledge related to chemical and biochemical features of primary ROS species and corresponding antioxidants. Metabolic pathways of five major ROS generators and five ROS clearance systems were described, including their ROS products, specific ROS enriched tissue, cell and organelle, and relevant functional implications. We provided an overview of ROS generation and induction at different levels of metabolism. We classified 11 ROS species into three types based on their reactivity and target selectivity and presented ROS homeostasis and functional implications in pathological and physiological status. This article intensively reviewed and refined biochemical basis, metabolic signaling and regulation, functional insights, and provided guidance for the identification of novel therapeutic targets.


Assuntos
Metabolismo Energético , Oxirredução , Animais , Antioxidantes/metabolismo , Metabolismo Energético/genética , Homeostase , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Estresse Oxidativo/genética , Fenótipo , Espécies Reativas de Oxigênio/metabolismo
9.
Arterioscler Thromb Vasc Biol ; 39(10): 2097-2119, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31366217

RESUMO

OBJECTIVE: Hyperhomocysteinemia (HHcy) is a potent risk factor for diabetic cardiovascular diseases. We have previously reported that hyperhomocysteinemia potentiates type 1 diabetes mellitus-induced inflammatory monocyte differentiation, vascular dysfunction, and atherosclerosis. However, the effects of hyperhomocysteinemia on vascular inflammation in type 2 diabetes mellitus (T2DM) and the underlying mechanism are unknown. Approach and Results: Here, we demonstrate that hyperhomocysteinemia was induced by a high methionine diet in control mice (homocysteine 129 µmol/L), which was further worsened in T2DM db/db mice (homocysteine 180 µmol/L) with aggravated insulin intolerance. Hyperhomocysteinemia potentiated T2DM-induced mononuclear cell, monocyte, inflammatory monocyte (CD11b+Ly6C+), and M1 macrophage differentiation in periphery and aorta, which were rescued by folic acid-based homocysteine-lowering therapy. Moreover, hyperhomocysteinemia exacerbated T2DM-impaired endothelial-dependent aortic relaxation to acetylcholine. Finally, transfusion of bone marrow cells depleted for Ly6C by Ly6c shRNA transduction improved insulin intolerance and endothelial-dependent aortic relaxation in hyperhomocysteinemia+T2DM mice. CONCLUSIONS: Hyperhomocysteinemia potentiated systemic and vessel wall inflammation and vascular dysfunction partially via inflammatory monocyte subset induction in T2DM. Inflammatory monocyte may be a novel therapeutic target for insulin resistance, inflammation, and cardiovascular complications in hyperhomocysteinemia+T2DM.


Assuntos
Antígenos Ly/genética , Aterosclerose/complicações , Diabetes Mellitus Tipo 2/genética , Hiper-Homocisteinemia/complicações , Monócitos/metabolismo , Doenças Vasculares/etiologia , Animais , Diferenciação Celular/genética , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Feminino , Hiper-Homocisteinemia/genética , Insulina/uso terapêutico , Resistência à Insulina , Macrófagos/metabolismo , Camundongos , Distribuição Aleatória , Fatores de Risco , Sensibilidade e Especificidade , Doenças Vasculares/fisiopatologia
10.
Front Oncol ; 9: 600, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31355136

RESUMO

Background: The mechanisms underlying low intensity ultrasound (LIUS) mediated suppression of inflammation and tumorigenesis remain poorly determined. Methods: We used microarray datasets from NCBI GEO Dataset databases and conducted a comprehensive data mining analyses, where we studied the gene expression of 299 cell death regulators that regulate 13 different cell death types (cell death regulatome) in cells treated with LIUS. Results: We made the following findings: (1) LIUS exerts a profound effect on the expression of cell death regulatome in cancer cells and non-cancer cells. Of note, LIUS has the tendency to downregulate the gene expression of cell death regulators in non-cancer cells. Most of the cell death regulator genes downregulated by LIUS in non-cancer cells are responsible for mediating inflammatory signaling pathways; (2) LIUS activates different cell death transcription factors in cancer and non-cancer cells. Transcription factors TP-53 and SRF- were induced by LIUS exposure in cancer cells and non-cancer cells, respectively; (3) As two well-accepted mechanisms of LIUS, mild hyperthermia and oscillatory shear stress induce changes in the expression of cell death regulators, therefore, may be responsible for inducing LIUS mediated changes in gene expression patterns of cell death regulators in cells; (4) LIUS exposure may change the redox status of the cells. LIUS may induce more of antioxidant effects in non-cancer cells compared to cancer cells; and (5) The genes modulated by LIUS in cancer cells have distinct chromatin long range interaction (CLRI) patterns to that of non-cancer cells. Conclusions: Our analysis suggests novel molecular mechanisms that may be utilized by LIUS to induce tumor suppression and inflammation inhibition. Our findings may lead to development of new treatment protocols for cancers and chronic inflammation.

11.
Front Physiol ; 9: 516, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867559

RESUMO

Under inflammatory conditions, inflammatory cells release reactive oxygen species (ROS) and reactive nitrogen species (RNS) which cause DNA damage. If not appropriately repaired, DNA damage leads to gene mutations and genomic instability. DNA damage checkpoint factors (DDCF) and DNA damage repair factors (DDRF) play a vital role in maintaining genomic integrity. However, how DDCFs and DDRFs are modulated under physiological and pathological conditions are not fully known. We took an experimental database analysis to determine the expression of 26 DNA DDCFs and 42 DNA DDRFs in 21 human and 20 mouse tissues in physiological/pathological conditions. We made the following significant findings: (1) Few DDCFs and DDRFs are ubiquitously expressed in tissues while many are differentially regulated.; (2) the expression of DDCFs and DDRFs are modulated not only in cancers but also in sterile inflammatory disorders and metabolic diseases; (3) tissue methylation status, pro-inflammatory cytokines, hypoxia regulating factors and tissue angiogenic potential can determine the expression of DDCFs and DDRFs; (4) intracellular organelles can transmit the stress signals to the nucleus, which may modulate the cell death by regulating the DDCF and DDRF expression. Our results shows that sterile inflammatory disorders and cancers increase genomic instability, therefore can be classified as pathologies with a high genomic risk. We also propose a new concept that as parts of cellular sensor cross-talking network, DNA checkpoint and repair factors serve as nuclear sensors for intracellular organelle stresses. Further, this work would lead to identification of novel therapeutic targets and new biomarkers for diagnosis and prognosis of metabolic diseases, inflammation, tissue damage and cancers.

12.
Redox Biol ; 17: 70-88, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29679893

RESUMO

Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular disease (CVD) which has been implicated in matochondrial (Mt) function impairment. In this study, we characterized Hcy metabolism in mouse tissues by using LC-ESI-MS/MS analysis, established tissue expression profiles for 84 nuclear-encoded Mt electron transport chain complex (nMt-ETC-Com) genes in 20 human and 19 mouse tissues by database mining, and modeled the effect of HHcy on Mt-ETC function. Hcy levels were high in mouse kidney/lung/spleen/liver (24-14 nmol/g tissue) but low in brain/heart (~5 nmol/g). S-adenosylhomocysteine (SAH) levels were high in the liver/kidney (59-33 nmol/g), moderate in lung/heart/brain (7-4 nmol/g) and low in spleen (1 nmol/g). S-adenosylmethionine (SAM) was comparable in all tissues (42-18 nmol/g). SAM/SAH ratio was as high as 25.6 in the spleen but much lower in the heart/lung/brain/kidney/liver (7-0.6). The nMt-ETC-Com genes were highly expressed in muscle/pituitary gland/heart/BM in humans and in lymph node/heart/pancreas/brain in mice. We identified 15 Hcy-suppressive nMt-ETC-Com genes whose mRNA levels were negatively correlated with tissue Hcy levels, including 11 complex-I, one complex-IV and two complex-V genes. Among the 11 Hcy-suppressive complex-I genes, 4 are complex-I core subunits. Based on the pattern of tissue expression of these genes, we classified tissues into three tiers (high/mid/low-Hcy responsive), and defined heart/eye/pancreas/brain/kidney/liver/testis/embryonic tissues as tier 1 (high-Hcy responsive) tissues in both human and mice. Furthermore, through extensive literature mining, we found that most of the Hcy-suppressive nMt-ETC-Com genes were suppressed in HHcy conditions and related with Mt complex assembly/activity impairment in human disease and experimental models. We hypothesize that HHcy inhibits Mt complex I gene expression leading to Mt dysfunction.


Assuntos
Doenças Cardiovasculares/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Hiper-Homocisteinemia/genética , Mitocôndrias/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Hiper-Homocisteinemia/metabolismo , Hiper-Homocisteinemia/patologia , Rim/metabolismo , Rim/patologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Especificidade de Órgãos , Fatores de Risco , S-Adenosilmetionina/metabolismo , Baço/metabolismo , Baço/patologia
13.
Antioxid Redox Signal ; 28(10): 973-986, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28325059

RESUMO

Significance: We proposed lysophospholipids (LPLs) and LPL-G-protein-coupled receptors (GPCRs) as conditional danger-associated molecular patterns (DAMPs) and conditional DAMP receptors as a paradigm shift to the widely accepted classical DAMP and DAMP receptor model. Recent Advances: The aberrant levels of LPLs and GPCRs activate pro-inflammatory signal transduction pathways, trigger innate immune response, and lead to tissue oxidative and inflammatory injury. Critical Issues: Classical DAMP model specifies only the endogenous metabolites that are released from damaged/dying cells as DAMPs, but fails to identify elevated endogenous metabolites secreted from viable/live cells during pathologies as DAMPs. The current classification of DAMPs also fails to clarify the following concerns: (i) Are molecules, which bind to pattern recognition receptors (PRRs), the only DAMPs contributing to inflammation and tissue injury? (ii) Are all DAMPs acting only via classical PRRs during cellular stress? To answer these questions, we reviewed the molecular characteristics and signaling mechanisms of LPLs, a group of endogenous metabolites and their specific receptors and analyzed the significant progress achieved in characterizing oxidative stress mechanisms of LPL mediated tissue injury. Future Directions: Further LPLs and LPL-GPCRs may serve as potential therapeutic targets for the treatment of pathologies induced by sterile inflammation. Antioxid. Redox Signal. 28, 973-986.

14.
Front Physiol ; 8: 818, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29109687

RESUMO

Background: Low-intensity ultrasound (LIUS) was shown to be beneficial in mitigating inflammation and facilitating tissue repair in various pathologies. Determination of the molecular mechanisms underlying the anti-inflammatory effects of LIUS allows to optimize this technique as a therapy for the treatment of malignancies and aseptic inflammatory disorders. Methods: We conducted cutting-edge database mining approaches to determine the anti-inflammatory mechanisms exerted by LIUS. Results: Our data revealed following interesting findings: (1) LIUS anti-inflammatory effects are mediated by upregulating anti-inflammatory gene expression; (2) LIUS induces the upregulation of the markers and master regulators of immunosuppressor cells including MDSCs (myeloid-derived suppressor cells), MSCs (mesenchymal stem cells), B1-B cells and Treg (regulatory T cells); (3) LIUS not only can be used as a therapeutic approach to deliver drugs packed in various structures such as nanobeads, nanospheres, polymer microspheres, and lipidosomes, but also can make use of natural membrane vesicles as small as exosomes derived from immunosuppressor cells as a novel mechanism to fulfill its anti-inflammatory effects; (4) LIUS upregulates the expression of extracellular vesicle/exosome biogenesis mediators and docking mediators; (5) Exosome-carried anti-inflammatory cytokines and anti-inflammatory microRNAs inhibit inflammation of target cells via multiple shared and specific pathways, suggesting exosome-mediated anti-inflammatory effect of LIUS feasible; and (6) LIUS-mediated physical effects on tissues may activate specific cellular sensors that activate downstream transcription factors and signaling pathways. Conclusions: Our results have provided novel insights into the mechanisms underlying anti-inflammatory effects of LIUS, and have provided guidance for the development of future novel therapeutic LIUS for cancers, inflammatory disorders, tissue regeneration and tissue repair.

15.
J Hematol Oncol ; 10(1): 168, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29065888

RESUMO

BACKGROUND: Nuclear receptors (NRs) can regulate gene expression; therefore, they are classified as transcription factors. Despite the extensive research carried out on NRs, still several issues including (1) the expression profile of NRs in human tissues, (2) how the NR expression is modulated during atherosclerosis and metabolic diseases, and (3) the overview of the role of NRs in inflammatory conditions are not fully understood. METHODS: To determine whether and how the expression of NRs are regulated in physiological/pathological conditions, we took an experimental database analysis to determine expression of all 48 known NRs in 21 human and 17 murine tissues as well as in pathological conditions. RESULTS: We made the following significant findings: (1) NRs are differentially expressed in tissues, which may be under regulation by oxygen sensors, angiogenesis pathway, stem cell master regulators, inflammasomes, and tissue hypo-/hypermethylation indexes; (2) NR sequence mutations are associated with increased risks for development of cancers and metabolic, cardiovascular, and autoimmune diseases; (3) NRs have less tendency to be upregulated than downregulated in cancers, and autoimmune and metabolic diseases, which may be regulated by inflammation pathways and mitochondrial energy enzymes; and (4) the innate immune sensor inflammasome/caspase-1 pathway regulates the expression of most NRs. CONCLUSIONS: Based on our findings, we propose a new paradigm that most nuclear receptors are anti-inflammatory homeostasis-associated molecular pattern receptors (HAMPRs). Our results have provided a novel insight on NRs as therapeutic targets in metabolic diseases, inflammations, and malignancies.


Assuntos
Mineração de Dados/métodos , Receptores Citoplasmáticos e Nucleares/metabolismo , Homeostase , Humanos , Receptores Citoplasmáticos e Nucleares/análise
16.
Adv Exp Med Biol ; 982: 359-370, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28551798

RESUMO

Mitochondrial proton leak is the principal mechanism that incompletely couples substrate oxygen to ATP generation. This chapter briefly addresses the recent progress made in understanding the role of proton leak in the pathogenesis of cardiovascular diseases. Majority of the proton conductance is mediated by uncoupling proteins (UCPs) located in the mitochondrial inner membrane. It is evident that the proton leak and reactive oxygen species (ROS) generated from electron transport chain (ETC) in mitochondria are linked to each other. Increased ROS production has been shown to induce proton conductance, and in return, increased proton conductance suppresses ROS production, suggesting the existence of a positive feedback loop that protects the biological systems from detrimental effects of augmented oxidative stress. There is mounting evidence attributing to proton leak and uncoupling proteins a crucial role in the pathogenesis of cardiovascular disease. We can surmise the role of "uncoupling" in cardiovascular disorders as follows; First, the magnitude of the proton leak and the mechanism involved in mediating the proton leak determine whether there is a protective effect against ischemia-reperfusion (IR) injury. Second, uncoupling by UCP2 preserves vascular function in diet-induced obese mice as well as in diabetes. Third, etiology determines whether the proton conductance is altered or not during hypertension. And fourth, proton leak regulates ATP synthesis-uncoupled mitochondrial ROS generation, which determines pathological activation of endothelial cells for recruitment of inflammatory cells. Continue effort in improving our understanding in the role of proton leak in the pathogenesis of cardiovascular and metabolic diseases would lead to identification of novel therapeutic targets for treatment.


Assuntos
Doenças Cardiovasculares/metabolismo , Metabolismo Energético , Potencial da Membrana Mitocondrial , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Animais , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Transporte de Elétrons , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/patologia , Estresse Oxidativo , Prótons , Espécies Reativas de Oxigênio/metabolismo
17.
J Hematol Oncol ; 10(1): 40, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28153032

RESUMO

BACKGROUND: It is well established that caspase-1 exerts its biological activities through its downstream targets such as IL-1ß, IL-18, and Sirt-1. The microarray datasets derived from various caspase-1 knockout tissues indicated that caspase-1 can significantly impact the transcriptome. However, it is not known whether all the effects exerted by caspase-1 on transcriptome are mediated only by its well-known substrates. Therefore, we hypothesized that the effects of caspase-1 on transcriptome may be partially independent from IL-1ß, IL-18, and Sirt-1. METHODS: To determine new global and tissue-specific gene regulatory effects of caspase-1, we took novel microarray data analysis approaches including Venn analysis, cooperation analysis, and meta-analysis methods. We used these statistical methods to integrate different microarray datasets conducted on different caspase-1 knockout tissues and datasets where caspase-1 downstream targets were manipulated. RESULTS: We made the following important findings: (1) Caspase-1 exerts its regulatory effects on the majority of genes in a tissue-specific manner; (2) Caspase-1 regulatory genes partially cooperates with genes regulated by sirtuin-1 during organ injury and inflammation in adipose tissue but not in the liver; (3) Caspase-1 cooperates with IL-1ß in regulating less than half of the genes involved in cardiovascular disease, organismal injury, and cancer in mouse liver; (4) The meta-analysis identifies 40 caspase-1 globally regulated genes across tissues, suggesting that caspase-1 globally regulates many novel pathways; and (5) The meta-analysis identified new cooperatively and non-cooperatively regulated genes in caspase-1, IL-1ß, IL-18, and Sirt-1 pathways. CONCLUSIONS: Our findings suggest that caspase-1 regulates many new signaling pathways potentially via its known substrates and also via transcription factors and other proteins that are yet to be identified.


Assuntos
Caspase 1/fisiologia , Regulação da Expressão Gênica , Transdução de Sinais , Transcriptoma , Tecido Adiposo/metabolismo , Animais , Aorta/metabolismo , Conjuntos de Dados como Assunto , Metabolismo Energético/genética , Inflamação/genética , Interleucina-18 , Interleucina-1beta , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout para ApoE , Especificidade de Órgãos , Sirtuína 1 , Análise Serial de Tecidos
18.
J Cardiovasc Transl Res ; 9(4): 343-59, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27230673

RESUMO

There are limitations in the current classification of danger-associated molecular patterns (DAMP) receptors. To overcome these limitations, we propose a new paradigm by using endogenous metabolites lysophospholipids (LPLs) as a prototype. By utilizing a data mining method we pioneered, we made the following findings: (1) endogenous metabolites such as LPLs at basal level have physiological functions; (2) under sterile inflammation, expression of some LPLs is elevated. These LPLs act as conditional DAMPs or anti-inflammatory homeostasis-associated molecular pattern molecules (HAMPs) for regulating the progression of inflammation or inhibition of inflammation, respectively; (3) receptors for conditional DAMPs and HAMPs are differentially expressed in human and mouse tissues; and (4) complex signaling mechanism exists between pro-inflammatory mediators and classical DAMPs that regulate the expression of conditional DAMPs and HAMPs. This novel insight will facilitate identification of novel conditional DAMPs and HAMPs, thus promote development of new therapeutic targets to treat inflammatory disorders.


Assuntos
Inflamação/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Lisofosfolipídeos/metabolismo , Transdução de Sinais , Animais , Biologia Computacional , Mineração de Dados , Bases de Dados Genéticas , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Homeostase , Humanos , Inflamação/imunologia , Lisofosfolipídeos/imunologia , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Receptores de Lisofosfolipídeos/genética , Receptores de Lisofosfolipídeos/imunologia
19.
J Cardiovasc Transl Res ; 9(2): 135-44, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26928596

RESUMO

To determine whether caspase-1 is critical in chronic kidney disease (CKD)-mediated arterial neointimal hyperplasia (NH), we utilized caspase(-/-) mice and induced NH in carotid artery in a CKD environment, and uremic sera-stimulated human vascular smooth muscle cells (VSMC). We made the following findings: (1) Caspase-1 inhibition corrected uremic sera-mediated downregulation of VSMC contractile markers, (2) CKD-promoted NH was attenuated in caspase(-/-) mice, (3) CKD-mediated downregulation of contractile markers was rescued in caspase null mice, and (4) expression of VSMC migration molecule αvß3 integrin was reduced in caspase(-/-) tissues. Our results suggested that caspase-1 pathway senses CKD metabolic danger signals. Further, CKD-mediated increase of contractile markers in VSMC and increased expression of VSMC migration molecule αvß3 integrin in NH formation were caspase-1 dependent. Therefore, caspase-1 is a novel therapeutic target for the suppression of CKD-promoted NH.


Assuntos
Doenças das Artérias Carótidas/enzimologia , Caspase 1/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Neointima , Insuficiência Renal Crônica/enzimologia , Animais , Biomarcadores/metabolismo , Nitrogênio da Ureia Sanguínea , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/patologia , Doenças das Artérias Carótidas/prevenção & controle , Artéria Carótida Primitiva/enzimologia , Artéria Carótida Primitiva/patologia , Artéria Carótida Primitiva/fisiopatologia , Caspase 1/deficiência , Caspase 1/genética , Inibidores de Caspase/farmacologia , Movimento Celular , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Genótipo , Humanos , Hiperplasia , Integrina alfaVbeta3/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Fenótipo , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/genética
20.
J Cardiovasc Transl Res ; 9(1): 49-66, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26746407

RESUMO

To determine whether the expression of histone modification enzymes is regulated in physiological and pathological conditions, we took an experimental database mining approach pioneered in our labs to determine a panoramic expression profile of 164 enzymes in 19 human and 17 murine tissues. We have made the following significant findings: (1) Histone enzymes are differentially expressed in cardiovascular, immune, and other tissues; (2) our new pyramid model showed that heart and T cells are among a few tissues in which histone acetylation/deacetylation, and histone methylation/demethylation are in the highest varieties; and (3) histone enzymes are more downregulated than upregulated in metabolic diseases and regulatory T cell (Treg) polarization/ differentiation, but not in tumors. These results have demonstrated a new working model of "Sand out and Gold stays," where more downregulation than upregulation of histone enzymes in metabolic diseases makes a few upregulated enzymes the potential novel therapeutic targets in metabolic diseases and Treg activity.


Assuntos
Enzimas/genética , Enzimas/metabolismo , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Código das Histonas , Histonas/metabolismo , Doenças Metabólicas/enzimologia , Doenças Metabólicas/genética , Acetilação , Animais , Mineração de Dados , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Humanos , Metilação , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...